
UNCLASSIFIED

AD 273 592

ARMED SERVICES TECINICAL INFUM AENCY
ARUN= HALL STATION
ARLINGW 12, VIRGINIA

UNCLASSIFIED



NOTICE: 'hen goverment or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
goverment procurnnt operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment my have formalated., furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
vise as in any inwner licensing the holder or any
other person or corporation, or conveying ay rights
or permission to mnnufacture, use or sell my
patented invention that msy in any way be related
thereto.



DCAI-T0IR-2.13 MPORT NO.

TDR-930(2230-01 )-TR-1

CW*J( ,
C"m g,

Unsteady Laminar Film Condensation

on Vertical Plate

S"•20 NOVEMBER 1961

(Prepared by PAUL M. CHUNG

Prepared forDEPUTY COMMAN DER AEROSPACE SYSTEMS

AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE

Inglewood, California

A

CONTRACT NO. AF 04(647)-930

41



DCAS-TDR-62-Z3 Report No.
TDR-930(2230-01 )TR-l

UNSTEADY LAMINAR FILM CONDENSATION

ON VERTICAL PLATE

by

Paul M. Chung

AEROSPACE CORPORATION
El Segundo, California

Contract AF 04(647)-930

20 November 1961

Prepared for

DEPUTY COMMANDER AEROSPACE SYSTEMS
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
Inglewood, California



ABSTRACT

The heat transfer associated with unsteady film con-

densation is analyxed for a vertical plate. The unsteady
state is considered to be created by the time -dependent

variation of either the uniform wall temperature or the
g-force field. From the perturbation-type theoretical

treatment, a set of universal variables and functions is
derived which describes the unsteady behavior of the

film. The universal functions are evaluated and tabu-

lated so that the deviation of the heat transfer from the

instantaneous steady state value canbe computed read-

ily. The effect of varying the fluid properties on the

unsteady heat transfer is discussed.
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SYMBOLS*

C (g/4v2)1 / 4

C p Specific heat at constant pressure

c P Specific heat of vapor at constant pressure

F Steady-state nndimensional stream function

f Unsteady-state nondimensional stream function defined by
Equation (14)

fo fl* .. f0 0  Perturbed nondimensional stream functions

g Acceleration body force

H Steady-state nondimensional temperature

h Heat of condensation of vapor

k Thermal conductivity

n Positive integer

Pr Prandtl number

q Local heat transfer to wall

T Absolute temperature

Tv Absolute temperature of vapor

t Time

u The x-component of velocity

v The y-component of velocity

x Direction and distance along plate measured from leading
edge

y Direction and distance normal to plate measured from wall

Note: All symbols are for liquid film unless specified otherwise.
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r Steady-state nondimensional film thickness

& Unsteady-state nondimensional film thickness defined by
Equation (12)

A0, A1 l.. $A00  Perturbed nondimensional film thickness

8 Film thickness

q Nondimensional similarity variable defined by Equation (10)

0 Unsteady-state nondimensional temperature defined by
Equation (15)

0 , .. 00 Perturbed nondimensional temperature

V Kinematic viscosity

If n Infinite set of nondimensional variables defined by
Equations (19) and (20)

P Density

Stream function defined by Equations (13)

Superscript

Total differentiatior with respect to the variable concerned

Subscript

8 Liquid-vapor interface

st Instantaneous steady state value

w Wall

V



INTRODUCTION

Film condensation is one of the basic heat transfer processes. The steady

state problem has been widely studied since the time of Nusselt. (1)*

Sparrow and Siegel ( 2 ) analysed the relaxation period of the condensation
process following a sudden drop of the wall temperature below the condensation

temperature. The analysis was based on an approximate method which neglects
the convection terms in the governing eouations and assumes a linear tempera-

ture profile across the liquid film.

Often, in engineering applications the- condensation takes place under
conditions which are continuously unsteady. The unsteady situation is usually

caused by a time-dependent variation of the wall temperature. With the current
interest in space technology, a factor in addition to unsteady wall temperature

may become important to unsteady condensation--that is the unsteady force

field which prevails in a space vehicre during acceleration and deceleration,

and which also prevails during reduced-g experiments.

In the present paper, the complete boundary layer equations will be used
to study the unsteady film condensation process and accompanying heat transfer

for a plate located parallel to the acceleration field. The analysis applies when
either the uniform wall temperature or the acceleration field is arbitrarily time

dependent.

*Superscript numbers in parentheses refer to similarly numbered

references in bibliography at end of paper.



FORMULATION OF PROBLEM

The physical model studied is shown on Fig. 1. The plate is in contact

with uniform saturated vapor*, and the plate temperature is considered to be

always below the saturation temperature. The vapor, therefore, continuously

condenses at the liquid-vapor interface. The heat of condensation is transferred

to the plate across the condensate film which flows along the plate under the

influence of the body force. The process is unsteady here because either the wall

temperature Tw or the body force g is arbitrarily time dependent. In the present

paper, we are interested in studying the unsteady behavior of the liquid film so

that the heat transfer to the plate may be obtained.

It is assumed, in the usual manner, that the condensation process is con-

trolled by the flow within the liquid layer and is not limited by the supply of

vapor at the interface. That is, the vapor reacts instantaneously to the inflow

requirements defined by the liquid flow conditions at the liquid-vapor interface.

The following boundary-layer-type conservation equations describe the
behavior of the liquid film. The density, viscosity, and the Prandtl number of

the liquid are assumed to be constant and only the case of laminar liquid flow is
considered.

Continuity equation:

&u +v - (1)
R 8 y

Momentum equation:

2
+ u 1u + V !u V u (2)

The analysis is also applicable when the vapor is superheated provided
thatc pv(T V - To} << ho.



Energy equation:

8 T + A vI T v !T . , T 3

79T ax a (3)r-

The boundary conditions are as follows:

For y= 0

u 0 (4)

v 0 (5)

T a Tw(t) (6)

for y = 8(xj t)

au 0 (7)

T TT

8v+ u -)ho (9

Boundary condition (7) states that the shear at the liquid-gas interface in

negligible. A recent study of steady-state condensation (3) which included the

interface shear showed that the boundary condition (7) is sufficiently accurate Lot

most cases: the only exception being the case where the Prandtl number isc_(T -Tw)

extremely small and, at the same time, the parameter c( a h -  is large.

Boundary condition (9) is derived from the consideration that the heat
released at the interface by the condensing vapor is carried away into the film by

conduction. The momentum equation is coupled to the energy equation only

through the boundary condition (9).
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SOLUTION OF EQUATIONS

In the present section, we shall solve the governing equations for the

velocity and temperature profiles through the film, and for the film thickness 6.

The results will then be used to obtain the heat transfer.

A study of the transient analysis given by Sparrow and Siegel (2 ) suggests
that the response of the film to the time -dependent variation of the boundary

condition may be very fast. Therefore, we shall obtain an unsteady solution in

the form of perturbation to the instantaneous steady-state solution. Such a

solution would be most useful in determining when the heat transfer with either

time -dependent wall temperature or g can be computed with sufficient accuracy

from quasisteady relations. The author ( 4 ) analyzed the problem of unsteady free

convection in this manner. The governing equations, Equations (1) through (3),
are quite similar to those used in the free convection study of reference (4). The

basic differences between the analysis of reference (4) and the present analysis

lie in the boundary conditions and, particularly, in the positions at which they

must be applied. In the analysis of the unsteady free convection, the boundary

conditions are applied at y = 0 and y = w. In the present analysis, the boundary

conditions must be applied at y = 0 and y = 6. The film thickness 6 is not

known a priori, and it may be obtained only as a result of the solution. The

thickness, moreover, varies along the plate and with respect to time. In order

to handle this complexity and also to arrive at the particular form of solutions

sought, Equations (1) through (3) and their boundary conditions are first trans -

formed in the following manner.

We may define a set of dimensionless variables as

S= - C
7t =' 0 x1 en T (10)
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and
I en(XI t)l = o (x$ t),9 (x, t)' ..... en(X, t ..,(l

where

c = [g (t)/4v2] 1/4

Equation (10) defines the ordinate 17 in such a way that the boundary conditions on

all the subsequent transformed equations may be applied at q = 0 and 1 = 1

only. It can be seen from Equation (10) that the variable A represents a

nondimensionalized liquid film thickness and is

A(1 0. el I .e*n' "' .. ) 8(x, t) [(t)/4v x 1 / . (12)

For the time being, we let the set of variables I n(XI t) be a set of arbitrary

functions of x and t.

The continuity equation (1) is satisfied in the usual manner by defining a

stream function op (x, y, t) by the equations:

ay (

v -(13)
Ox

We now introduce a nondimensional stream function f and let it be related

to 41 by the following equation:

f( I o , el 1 .. ) 3/4 (x# yo t) (14)
4vx3/ c(t)Mfos es ... en ""...



We also define a nondimensional temperature function as:

T(x& yo t) - T
.. ... (15)

In Equations (10), (12), (14)g and (15)$ it was assumed a priori that A is a
function of f. (xI 0 , and f and 0 are functions of q and fen (x# t)} only. Now
if the transformations

8 (X# t)--- A(0, l' '" . n' ""0)

(x# yo An"--V( ,' fog el' "' 0 n' 1"'0)

and

O(x, yo 0--- 07(, eo' el' ."'e n' ""..

are carried out in Equations (2) through (9), and if the resulting equations could
be made to be functions of 17 and fe(x. t4 only, then the a priori assumptions
would have been proved to be self-consistent ones for the present purpose.

The definitions of nondimensional stream function and the variables yield:

u = 41C 2 xi / 2 of

and

v - VCx /4 A(3f -- f) - 4 3 (f &A DeO n (16)

4vCx3/A- '& E

n-0 an a -

The momentum and the energy equations are now transformed to the following
equations.
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Momentum equation:

3C- v 2"-

_ 1/2 [ - (1 .L)2 + .2 L 2 ( f &

+~ (2 8f__ 8i A nA(A 4AY I7 nu T ) + 4W
u-c " nm07o~ - 7 Cn ) nuO81n DOG -

4o~a A .o - £, ' .o17
8178 x) x at o n
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Energy equation

1 *2A A2  C l/ZZ x1/ 20 TwT)'

.o , 4 all C V + V Cy [bi
00'~A 8A -w + A 2 y' O + 4x A2of1 be en

17n]; Tn- n~r ; V. w( 8 lln; ben a x

-AW a en A2 k Of B)e18

In the above two equations. C' and (Tw - T )' are zero when the body force

and the wall temperature, respectively, are independent of time.

A study of Equations (17) and (18) shows that all the variables x and t ap-

pearing explicitly in these equations would disappear completely when en is

defined as:

n+l n+l

en 1 d (Tw - TO) (19)

=" Ww dtn + 1

when Tw is unsteady, and

n+1
x I c (20)

dt

when g is unsteady. Here it is considered that Tw and g are continuously

differentiable with respect to t. The fact that the particular definitions of en

make equations (17) and (18) functions ofq and {ln} only, can be readily seen

by noting the relationships;

8



x2 ben . P /bf
CZ I. V -W fn+1 "fOfn

Of (n+l)e
x-§7-

when Tw is unsteady, and

x1/2 e e
V/z at 4 +- (3+2n)eof

when g is unsteady.

Equations (17) and (18) now become for the case of unsteady Tw :

Momentum equation

a3 f ? 3 L ] A 2a ,, 81[ , V + aJ , ,,2 (n+ - eo %n) iT

n 0

+ X 2 Go a 82f + A 2 Of so 1) A

n= 0 n 0

2a 2 ff
na0n 0



Energy equation

Pr Z Ln=O0

2a -17 no I f0

n= 0
+A AZ fO + jE n 1e n

nI O en 0 nj0

E quation' (17) and (18) become for the case of uteady g:

Momentum equation

(n+ 1) en0 z(~+?

8en17 (+ ) fn +T A2
- 3+n 0~

-
Zf-iAn=O~

Moenu eqato

8 Af la f A? (n+ ) A-f
n ~ (+2n) Cn] +71BE

no 0 na 0

- 20f 
(3)

10



Energy equation

1 20 A2  Be 2 go go00

~ 81~ A~f u ~A 2 '7 Nq L f+ I - (3+n) e]fn

~ [~n~ -(3+2n) go~ - + 2 A 2  a (n+ 1)

n 0 
n 0

Be 0 86 z 0- Z( " n~l (n (n+ 1) fn -oaf)

n 0 nu0

The boundary conditions (4) through (8) are transformed for both unsteady -Tw

and -g cases as:

At 17 x 0

On 1 (25)

f - 0 (26)

Wal S 0 (27)

At 1=1

0=0 (28)

2 2 a(29)

11



Boundary condition (9) is transformed at e a I for unsteady -Tw case as:

26 n~ o ~ + 3fA' + 2At (n+i)
nz 0 nu 0

4zAZ 0 (n ) n - . c pTa-TW) 0 (30)

nu O

and for unsteady -g case as:

., + -(n+i " 3+n) C0 Cn A + 3Af + 2M F(n+ ) f T
n 0 n n= 0

COn A Z 01 n+l ) n  I -O n p Ts Tw 0 n 3

+ P r h o 8 1(

n= 0

Equations (21) through (31) are functions of 11 and n(x, t)} only. It is now

clear that the Initial assumptions made on A, f, and 0 are entirely self-

consistent. That is, A is a function of I{n(x, t)} , and f and 0 are functions

of q and {n(xt)} only.

In order to solve Equations (21) through (24) with their boundary conditions,

the functions f, 0, and A are first expanded into generalized Taylor series

about the steady-state solutions as follows:

f(, o' el' l " - ,n' *) = F() + 0 f0( ) + e1 f 1(') +

+ 0 f0 0o1) + + f4 f0 1 7 ) +  ... (3)

12



Of~ eno H* (q) + [f 0 1 () + f ,0)+

and

WO, e' f r' + + o. .

z + + (34)

When the Series (32) through (34) are substituted into Equations (ZI) through

(24) and when the coefficients of 1, f0p f' f1, etc.... are collected in each

equation, an infinite met of perturbed equations results. For the case of

unsteady Tw , the zeroth-order and the first two first-order perturbed

equations are:

Fill + Fr2 (3FF" ZF12 + 1) - 0

(35)
1 H" + 3 2F H 0

f0 "1 +T 2"(3Ff 0 " 6F'f0 ' 4 5F "f 0 ) - Zro0 (4FF 2 1F'2 + 1)

(36)

Pr 0  
2 (3FOO' - 2F 0O) - 8FAoFHI - 5fOz fH'(

13



jL' + r (3Ff 1
'' - W'llt + 7F"lf) " " zr/A(SFF" - ar '2 + 1)

+ 2 (r 2 t0 ' -FA0 ,F")

(37)

" + r - ,2'(3 0- - Zrh17o HI + zrI 0

- 10fA 1 FH' - .7r 2 f H'

For the came of unsteady g, the zeroth-order equations are the same as

Equations (35) and the first two first-order perturbed equations are:

f0"it +,,2 (3Ff0 " _ 6Ff 0 , + 5F"f0 ) r 2 (2F, + 1F")

- 2FA0 (4FF" - 2F' 2 + 1)

(38)

0 o + r (3F00 ' - 2F' 0 ) w r"2 iHI - 8fh0 FH' - 5Jr 2 f0 H'

f' +r 2(3Ff" - 8F'f I + 7F"f1) w "]A0 F ' ' + "2f 0

- 2FAI(SFF" - 2F' + 1)

(39)

SPr +r 2 (3Fe 1 I - 4F'e1 ) w -'A 0 vIH' + F'2 0 0 - lorA H

- 7J 2fI H'

14



Boundary conditions (25) through (29) for both unsteady -Tw and -g cases

become:

At q7 0

F f 0 f1 = 0

F' == u 0

H = 1, 00 z 01 0 (40)

At q = 1

F *l a f0 I = f II = 0

H = 00 =01 = 0 (41)

Also at 17 - 1, boundary condition (30) becomes for unsteady -Tw came

3r2F~ . LCpv(T 31Tw) H)

Pr hO

8rA + r 2 . I1 Cp(T s'Tw ) 1

8FA0 F + sF2i0  Pr ho  0

2FA + 10FAIF + 7F2f1  I C P(T S eT W ) l (42)0 Pr ho0

and boundary condition (31) becomes for unsteady -g came

15



3r 2 F Pr h 0 H'

-1r2 + 8rA F +5' 2 f I tj0 0 P h 0

2 c (T -T w)
rA 0 + lOFAIF + 7Ff1  _ - _h 0 (43)

Equations (33) through (39) and their boundary conditions (40) through (43) show
that the solution of each of the perturbed equations will depend on the parameters
Pr and cp(Ts-Tw)/h ° . Steady-state solutions of various condensation problems,
when they are based on boundary layer equations, depend on the two parameters,
Pr and cp(Ts-Tw)/hO, as is seen in references (3), (5), (6), and (7). With the
particular transformations used in the present analysis, it is seen that we may
evaluate the universal functions, F, f0 , H, 60, F. Ao, etc., as functions of the
same two parameters only, and we may obtain the general unsteady solutions by
the use of series (32) through (34).

Equations (35) are the equations for the steady-state case, and some of their
solutions can be deduced from the results of reference (5) by properly re-
lating the variables of the present analysis to those of the reference. Equations
(35) through (39) are integrated in the present study by the use of IBM-7090
digital computer for several combinations of Pr and cp(Ts-Tw)/h ° . Two
typical results are shown in Figs. Z through 5.

HEAT TRANSFER

The heat transfer at the wall may be now obtained by evaluating (aT/y)w
from the results of the preceding section. The relationship between the Instan-
taneous local heat transfer q and the hypothetical instantaneous steady-state
transfer qst is derived by the use of Equations (32) through (34) as:

16



+ + 0 1  (&lw'& + (44)qst Hrw r T r-

where

1/4
q k(Tw-T m(4xL w (45)

The computed values of H'w, 00w', A 0, etc., are tabulated in Tables I
and Z. The coefficients of e0 and el of Equation (44) calculated from the

tables are presented in a graphical form in Figs. 6 through 9. These figures

and Equation (44) together enable us to quickly evaluate the ratio of unsteady

local heat transfer to the hypothetical instantaneous steady-state heat transfer

when en are sufficiently small.

DISCUSSION

Figures 6 through 9 show the parameters (00w'/Hw' - &0/r) and

(Olw'/Hw - A/F), which will be referred to hereafter as coefficients of f0
and 61, respectively, calculated from Tables I and 2 for unsteady -Tw and

-g cases. As can be seen from Equation (44), these parameters directly

represent the first-order effect of unsteady -T w and -g on the condensation

heat transfer. Behavior of these parameters, therefore, will be discussed in

the present section.

Unsteady Tw Case

Let us first investigate the relationships between the coefficients of 40
and el, and Prandtl numbers. Figures 6 and 7 show that the effect of un-

steady -Tw on heat transfer becomes greater as the Prandtl number is
increased. The reason is rather obvious. A larger Prandtl number implies

that either the kinematic viscosity is higher or the thermal diffusivity is lower,

or it implies both. As is seen from Equation (12), a higher Y' means, in

general, a thicker film. Both increasing film thickness and decreasing thermal

17



diffusivity increase the time lag in thermal response of the film to the varying

Tw . Therefore, the deviation of unsteady heat transfer'from the instantaneous
steady-state value becomes greater as Prandtl number is increased.

It is seen in Figs. 6 and 7 that (O0w'/Hwl - A 0 IF) is positive whereas

(6 1 w/HwI - Al/F) is negative. Equation (19) shows.'hat both C0 and (I are

negative when Tw' and Tw" are positive. Therefore, in view of Equation (44),

the first-order effect of Tw' on heat transfer is to decrease it from the instan-

taneous steady-state value whereas that of Tw" is to increase it.

It is also seen in the figures that the coefficient of 40 increases approxi-
mately with V/ whereas the magnitude of the coefficient of C4 increases

approximately with Pr. This means that only the effect of Tw I is important

when the Prandtl number is low, and the importance of the effect of Tw 1 in

relation to that of Tw' increases quite rapidly as the Prandtl number is

Increased.

In Table I and Figs. 6 and 7, only the results for Pr a 1 are presented.

The reason for this is that the coefficients of f0 and f1 for the lower Prandtl
numbers were found to be sufficiently small so that the effect of unsteady Tw
on heat transfer is practically negligible when Pr « 1.

The relationships between the coefficients of f0 and' 4 and the

parameter cp(Ts-Tw)/h ° can be also seen from Figs. 6 and 7. It is seen

that, for a given Prandtl number, the magnitudes of coefficients of 40 and el

increase as the parameter cp(Ts-Tw)/h ° increases. The film is usually

thicker when cp(Ts-Tw)/h ° is larger (see Fs in Table 1). The time lag,

therefore, in the thermal response of the film to the varying Tw becomes

greater as cp(Ts-Tw)/h ° increases.

Equation (19) shows that the magnitude of fn increases with I/(Ts-Tw).

Figures 6 and 7, on the other hand, show that the magnitudes of coefficients of

40 and ( 1 increase approximately with V/TS-T w . Hence, it is seen from

Equation (44) that the first-order deviation of heat transfer from the instan-

taneous steady-state value increases approximately with I/j/"T-T w for given

18



values of Tw I and Tw". The first-order effect, therefore, of the unsteady Tw

on heat transfer Increases as (To-Tw) is decreased for given values of

TwI and Tw". It Is interesting to note, however, that this dependence of the

unsteady effect on the energy-driving potential is much weaker than that found

In reference (4) for the unsteady convection problem.

The unsteady convective heat transfer depended on I en, only and

T

(Tw-T 0 ) 3/

T w"I 3 (Tw1) 2

el (Tw-Teo. (TwTQO )

where T., is the undisturbed gas temperature.

Unsteady g Case

The effect of unsteady g on condensation heat transfer is of a different

nature compared with the effect of unsteady -Tw discussed in the preceding

section. In the latter case, the unsteadiness is created at one of the boundaries,

and the disturbance propagated into the film. The unsteady g, on the other

hand, effects the entire film simultaneously since g is uniform throughout the

flow field. Moreover, the unsteady -Tw affects the temperature profile

directly and the flow field Indirectly whereas the reverse is true for the

unsteady -g case.

There are two separate factors which cause time lag in the flow response

of the film to the varying g. They are the inertial and the viscous drags of the

liquid in the film. Let us investigate the behavior of these two factors and, In

turn, the unsteady behavior of the film with respect to Prandtl number and

19



cp(Ts-Tw)/h ° . The time lag due to inertia is independent of Pr and

Cp(Tg-Tw)/h' since it is independent of the total mass of the film. The time

lag due to viscous drag, on the other hand, depends quite strongly on Pr and

cp(Ts-Tw)/h ° . At the higher Prandtl numbers, the viscous effect is felt by
most of the film. As the Prandtl number is decreased, the viscous effect

becomes confined to the portion of the film closest to the wall. This phenomenon

can be seen, for instance, by comparing the steady-state velocity profiles given

in Figs. 2 and 4 for Pr = 10 and Pr = 0. 01, respectively. Thus, the time lag

in the flow response of the film to the varying g at high Prandtl numbers

(Pr Z 10) is predominantly due to the viscous drag, whereas the time lag at

low Prandtl numbers (Pr < 0. 1) is mainly due to the inertial drag. This fact

is clearly seen in Fig. 8 where the coefficients of e0 and f1 are plotted

against Prandtl number for cp(Ts-Tw)/h 0 = 0. 1 . It is seen from Fig. 8 that

the magnitudes of coefficients of eo and el increase as the Prandtl number is
increased when the Prandtl number is high. It is because the viscous drag

continuously increases as the Prandtl number is increased. At the low Prandtl

numbers, on the other hand, it is seen that the coefficients of 40 and e1

become practically invariant with respect to the Prandtl number since the iner-

tial drag is independent of the Prandtl number. The transition from the regime

of dominant inertial lag to the regime of dominant viscous lag is seen from

Fig. 8 to take place between Pr 0 0. 5 and Pr f 5.

As mentioned earlier, the no-interface-shear boundary condition, Equa-

tion (7), becomes less accurate as the Prandtl number is decreased below

about 0. 1. There probably would be an additional time lag due to the interface

shear, and this effect could become non-negligible at the low Prandtl numbers.

The magnitudes of coefficients of eo and el may, therefore, begin to increase

again as the Prandtl number is continuously lowered below about 0. 1.

Let us now consider the effect of varying cp(Ts-Tw)/h ° on the coefficients

of e0 and fl. As previously noted, the film is generally thicker when

cp(Ts-Tw)/h ° is larger for a given Prandtl number (as was seen from"'s

given in Tables I and 2). When the film is thick, a relatively small portion of

20



the total liquid near the wall is strongly affected by viscous drag. On the other

hand, when the film Is thin, practically the entire film is affected strongly by
the viscous drag. Therefore, with the aid of previous discussions, it is seen

that the magnitudes of coefficients of eO and eI should increase as cp(Ts-Tw)/h O

is decreased. Figure 9, which shows the variations of coefficients of 0 and

with respect to cp(Ts-Tw)/h ° , supports this argument 'or Pr = 10

It is seen from Figs. 8 and 9 that the coefficient of 40 is negative whereas

that of el is positive. At the same time, Equation (Z0) shows that f0 and el are

positive when C' and C" are positive. Hence, the effect of C' on heat transfer is

a decrease from the instantaneous steady-state value, whereas the effect of C"

is an increase.

Finally, let us briefly consider the reduced-g experiments which are being

performed by various people in connection with space applications. Conditions

of unsteady g usually prevail during reduced-g experiments. It can be shown

from Equation (Z0) that

0 -- 2 and f Id&Z -=
g Ig gJ

Hence, the effect of unsteady g on condensation heat transfer becomes magnified
quite rapidly with decreasing g for given values of g' and g". It is therefore

important to keep the unsteady -g effect in mind when the reduced -g experiment

includes condensation. The effect is most pronounced when the Prandtl number
is high and, at the same time, c p(To - Tw)/h ° is low. It is noted here that

relationships between 0 and 6I and g were found to be the same in reference

(4) for the unsteady convection as the present relationship for the unsteady

condensation.

CONCLUDING REMARKS

The heat transfer associated with unsteady laminar film condensation was

analyzed for a vertical plate. Time-dependent variation of either the uniform
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wall t,,mperature or the g-force field was considered. From the theoretical

treatment, the first-order deviation of heat transfer from the instantaneous

steady-state value was obtained in terms of a set of nondimensional variables

If n) and parameters Pr and cp(To - Tw)/h O . From the results obtained, it is

possible to determine when the heat transfer with either time-dependent wall

temperature or g can be computed with sufficient accuracy from quasisteady

relations.

The effect of unsteady Tw on heat transfer was found to increase as the

Prandtl number I/( Ta - Tw)and c p/ho are increased. The unsteady -Tw, how-

ever, was found to have negligible effect on heat transfer when Pr < I.

Unsteady -g was found to affect the condensation heat transfer substantially

for the entire Prandtl number range (0. 001 - Pr S 100) considered. It was found

that the effect of unsteady g is insensitive to the Prandtl number at low Prandtl

numbers. The effect, however, was found to steadily increase with the Prandtl

number at high Prandtl numbers. The unsteady -g effect on heat transfer was

also found to increase as cp(T s - Tw)/h 0 and g are decreased. Therefore, it is

important to keep the unsteady -g effect in mind when performing a reduced -g

experiment.

Finally, even though the present study was concerned only with the vertical

plate, it can be directly applied to a horizontal circular cylinder by redefining

the variables 1 and en in a manner analogous to that done in reference (4) for

the unsteady free convection problem.
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Table 1

Universal Functions for Heat Transfer (Unsteady Tw)

=w
c c F ( 0 A 1 9T o 0

, ii,

0.05 0.4726 -0. 0059 -1. 005 -0. 1478

0.1 0. 5616 -0. 0098 0.0079 -1. 010 -0.2074 0.0092
0. 5 0. 8351 -0. 0313 0. 0138 -1. 044 -0. 4376 0.0385
1.0 0.9858 -0. 0489 0.0204 -1. 081 -0. 5868 0.0655

0.05 0.2651 -0.0102 0.0374 -1.005 -0.4652 0.0464
0.1 0.3140 -0.0167 0.0449 -1.010 -0.6494 0.08960. 5 0.4597 -0. 0463 0. 0695 -1. 044 -1. 327 0. 3507

1.0 0. 5341 -0. 0648 0.0821 -1. 079 -1. 716 0.5532

0.05 0.1490 -0.0180 0.2104 -1.005 -1.470 0.4635

100 0 1 0.1766 -0.0295 0.2529 -1.010 -2.052 0.8938
0. 5 0.2579 -0.0806 0.3907 -1.044 -4.178 3.473
1.0 0.2992 -0.1110 0.4574 -1.079 -5.384 5.438

Table 2

Universal Functions for Heat Transfer (Unsteady g)

Pr cp(Ts Tw) H 0

h' w . ow 1w

0.001 0.1 7.019 3. 349 -0. 9035 -1.014 0.0005 -0. 0003

0.01 0.1 2.412 1.177 -0. 3278 -1. 011 0.0017 -0.0009

1.0 0.1 0. 5616 0. 3620 -o. 1421 -1.010 0.0205 -0.0139

0.05 0.2651 0.6374 -1. 133 -1.005 0.0466 -0.1148
0.1 0. 3140 0. 5447 -0.6891 -1.010 0.0651 -0.11831. 5 0.4597 0.4065 -0.2425 -1.044 0.1340 -0.1404

1.0 0. 1341 0.3792 -0.1713 -1.079 0.1748 -0.1592

100 0.1 0.1766 0.9507 -3. 828 -1.010 0.2059 -1.162
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